Dionne

From OpenWetWare
Jump to navigationJump to search

About Us       Protocols &c.       Lab Members       Publications       Contact       Links


Welcome to the Dionne lab!

That is to say, Marc Dionne's lab, at Imperial College London; not to be confused with any other Dionne lab.

We are interested in the ways in which host genotype affects the biology of bacterial infection. Drosophila melanogaster is our animal model of choice.

Work in the lab has been funded by the Biotechnology and Biological Sciences Research Council, the Wellcome Trust, and the Medical Research Council.

A BBSRC-funded postdoctoral position is available in the lab! If you're interested, get in touch, or apply here!

Metabolic-immune interaction and host genetics in infection

It has been known for centuries that chronic infections cause systemic metabolic disruption, but it is fundamentally unclear why and how these events are linked. Does metabolic disruption somehow facilitate the host response to infection? If so, how? We address these fundamental biological questions by analyzing pathogenic infections and their consequences in the fruit-fly Drosophila melanogaster. We use classical Drosophila genetics, computational analysis and modeling of gene expression, biochemistry, and intravital microscopy to probe the metabolic-immune interface.

One pathogen of particular interest to us is Mycobacterium marinum. We have previously shown that flies infected with M. marinum exhibit progressive loss of metabolic stores accompanied by mild hyperglycemia. We have shown that these effects are caused, in part, by systemic disruption of signaling via the anabolic effector kinases Akt and p70 S6 kinase. The transcription factor MEF2 responds to nutrient signals to regulate expression of both immune effectors and anabolic enzymes. Remarkably, though MEF2 promotes the expression of both groups of genes, its choice of targets is regulated by a conserved phosphorylation that alters its affinity for the TATA binding protein. It appears that the disruption of anabolic kinase activity may be required to permit MEF2 to drive the antibacterial response. This work has recently been published in Cell.

Ongoing work continues to explore other metabolic inputs into MEF2, other targets of MEF2 in its two discrete physiological states, and the pathways by which infection disrupts anabolic kinase activity.

Cytokines and cytokine signalling

In the course of screening for mutants with defective responses to M. marinum, we find a lot of molecules and pathways that end up being involved in cytokine signalling and its consequences. Cytokines regulate the realized immune response of the fly, much as they do in mammals; they also can be significant direct drivers of pathology due to effects on immune and nonimmune target tissues. However, very little is known about the biology of cytokines in Drosophila melanogaster, especially in the context of bacterial infections.

Some time back, we showed that two different TGF-betas regulate fly immunity, each inhibiting a specific arm of the immune response, and each being produced by only a subset of phagocytes. Check it out!

We've also done some exciting work in collaboration with Frederic Geissmann's lab on the role of JAK-STAT signalling in flies on a high-fat diet; you can read about it here. We continue to work on the roles of this pathway in Mycobacterium marinum infection and in muscle physiology—we hope to be able to say more about these soon.

<wikionly>

Recent updates to the lab wiki

List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

1 May 2024

N    19:16  Microfluidic Vasculature for Cell Culture - Lilin Zhao, Melissa Deschamps, Marissa Burgess, Matthew Tiller, Jacob Kellett, Tina Leong, Katelyn Mullen, Daniel Bell, Anna Comperchio, Evelyn Moore‎‎ 9 changes history +15,037 [Ejmoore‎ (9×)]
     
19:16 (cur | prev) −1 Ejmoore talk contribs (→‎Applications for Understanding Tumor Metastasis)
     
19:16 (cur | prev) +2 Ejmoore talk contribs (→‎Applications for Understanding Tumor Metastasis)
     
19:15 (cur | prev) +1 Ejmoore talk contribs (→‎Mimicking Geometry of Blood Vessels) Tag: Manual revert
     
19:15 (cur | prev) −1 Ejmoore talk contribs (→‎Mimicking Geometry of Blood Vessels)
     
19:15 (cur | prev) 0 Ejmoore talk contribs
     
19:14 (cur | prev) +5,221 Ejmoore talk contribs
     
19:03 (cur | prev) +535 Ejmoore talk contribs
     
18:54 (cur | prev) +2 Ejmoore talk contribs (→‎Applications for Understanding Tumor Metastasis)
N    
18:52 (cur | prev) +9,278 Ejmoore talk contribs (Created page with "{{Template:CHEM-ENG590E}} ==Introduction== It is extremely important to create ''in vitro'' models of vasculature in order to study cancer (including metastasis and tumor cell circulation), drug delivery, diseases, and to supply oxygen and remove waste to systems too large to depend on diffusion. Vascular diseases are the leading cause of death worldwide causing around 17 million deaths per year. There are limited treatments, and therefore a dire need to better understa...")
     18:52  CHEM-ENG590E:Wiki Textbook diffhist +136 Ejmoore talk contribs (→‎Chapter 9 - Microfluidics and Cell Culture)
     18:45  Microfluidic Vasculature for Cell Culture - Evelyn Moore‎‎ 7 changes history −2,561 [Ejmoore‎ (7×)]
     
18:45 (cur | prev) −553 Ejmoore talk contribs
     
18:45 (cur | prev) +554 Ejmoore talk contribs
     
18:44 (cur | prev) −1 Ejmoore talk contribs (→‎Applications for Understanding Tumor Metastasis)
     
18:43 (cur | prev) +13 Ejmoore talk contribs
     
18:42 (cur | prev) +7 Ejmoore talk contribs
     
18:40 (cur | prev) +347 Ejmoore talk contribs (→‎Applications for Understanding Tumor Metastasis)
     
18:39 (cur | prev) −2,928 Ejmoore talk contribs
     18:42 Upload log Ejmoore talk contribs uploaded File:Endothelial Microvessel Device.png
     17:23  Beauchamp:Publications diffhist +146 Michael S Beauchamp talk contribs

30 April 2024

     22:14  Lee:JC diffhist +23 Wooin Lee talk contribs (→‎2024)
     13:36  Schumer lab: Commonly used workflows‎‎ 6 changes history +4,252 [Tododge‎ (6×)]
     
13:36 (cur | prev) +38 Tododge talk contribs (→‎Genome assembly from PacBio HiFi data)
     
13:35 (cur | prev) +21 Tododge talk contribs (→‎Filtering high coverage GATK variant calls)
 m   
13:32 (cur | prev) +1,668 Tododge talk contribs (→‎Filtering high coverage GATK variant calls)
 m   
13:20 (cur | prev) +1,096 Tododge talk contribs (→‎Filtering high coverage GATK variant calls)
 m   
13:15 (cur | prev) +1,364 Tododge talk contribs (→‎Using filtering high coverage GATK variant calls)
 m   
11:50 (cur | prev) +65 Tododge talk contribs (→‎Using GATK variant calls to generate pseudofastas)
     12:57  (Upload log) [Noelani Kamelamela‎ (2×)]
     
12:57 Noelani Kamelamela talk contribs uploaded a new version of File:NKBMC04082024.jpg
     
12:01 Noelani Kamelamela talk contribs uploaded File:SynergyH1cart.jpg
     12:52  BioMicroCenter‎‎ 3 changes history +85 [Noelani Kamelamela‎ (3×)]
     
12:52 (cur | prev) +54 Noelani Kamelamela talk contribs
     
12:08 (cur | prev) +32 Noelani Kamelamela talk contribs
     
10:51 (cur | prev) −1 Noelani Kamelamela talk contribs
     12:48  BioMicroCenter:Varioskan‎‎ 10 changes history +1,875 [Noelani Kamelamela‎ (10×)]
     
12:48 (cur | prev) +22 Noelani Kamelamela talk contribs (→‎Synergy H1)
     
12:05 (cur | prev) 0 Noelani Kamelamela talk contribs (→‎Varioskan Flash)
     
12:04 (cur | prev) +2 Noelani Kamelamela talk contribs (→‎Varioskan Flash)
     
12:04 (cur | prev) −2 Noelani Kamelamela talk contribs (→‎Varioskan Flash) Tag: Manual revert
     
11:35 (cur | prev) −4 Noelani Kamelamela talk contribs
     
11:35 (cur | prev) +4 Noelani Kamelamela talk contribs
     
11:34 (cur | prev) −2 Noelani Kamelamela talk contribs
     
11:33 (cur | prev) +4 Noelani Kamelamela talk contribs
     
11:33 (cur | prev) +1 Noelani Kamelamela talk contribs
     
11:32 (cur | prev) +1,850 Noelani Kamelamela talk contribs
     12:24  BioMicroCenter:Covaris‎‎ 6 changes history +579 [Noelani Kamelamela‎ (6×)]
     
12:24 (cur | prev) −1 Noelani Kamelamela talk contribs (→‎E220 Evolution)
     
12:23 (cur | prev) +3 Noelani Kamelamela talk contribs (→‎E220 Evolution)
     
12:23 (cur | prev) −27 Noelani Kamelamela talk contribs (→‎R230)
     
12:22 (cur | prev) +43 Noelani Kamelamela talk contribs
     
12:21 (cur | prev) −4 Noelani Kamelamela talk contribs
     
10:53 (cur | prev) +565 Noelani Kamelamela talk contribs
     12:12  BioMicroCenter:RTPCR‎‎ 2 changes history −56 [Noelani Kamelamela‎ (2×)]
     
12:12 (cur | prev) −37 Noelani Kamelamela talk contribs (→‎Light Cycler 480 II Real-time PCR Machines)
     
12:11 (cur | prev) −19 Noelani Kamelamela talk contribs (→‎Light Cycler 480 II Real-time PCR Machines)
     11:04  Hu:Publications diffhist +3 Hugangqing talk contribs

</wikionly>

<nonwikionly> This page was created using Open Wetware.</nonwikionly>